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Abstract

The dorsolateral prefrontal cortex (DLPFC) is a functionally and structurally heterogeneous region 

and a key node of several brain networks, implicated in cognitive, affective, and sensory 

processing. As such, the DLPFC is commonly activated in experimental pain studies, and shows 

abnormally increased function in chronic pain populations. Furthermore, several studies have 

shown that some chronic pains are associated with decreased left DLPFC gray matter and that 

successful interventions can reverse this structural abnormality. In addition, studies have indicated 

that non-invasive stimulation of the left DLPFC effectively treats some chronic pains. Here, we 

review the neuroimaging literature regarding the role of the DLPFC and its potential as a 

therapeutic target for chronic pain conditions, including: studies showing the involvement of the 

DLPFC in encoding and modulating acute pain; studies demonstrating the reversal of DLPFC 

functional and structural abnormalities following successful interventions for chronic pain. We 

also review studies of non-invasive brain stimulation of the DLPFC showing acute pain 

modulation and some effectiveness as a treatment for certain chronic pain conditions. We further 

discuss the network architecture of the DLPFC, and postulate mechanisms by which DLPFC 

stimulation alleviates chronic pain. Future work testing these mechanisms will allow for more 

effective therapies.
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INTRODUCTION

Pain poses the largest health-related burden on society, and is the primary cause of long-term 

disability globally103. Despite many decades of pain research, there are few effective 

treatments for chronic pain. The pain experience is a construct of the central nervous system 

(CNS) – an emergent property of network activity in the brain2, 23, 48 – and chronic pain is 

thought to be a CNS disorder98. However, there has yet to be a single brain region or 

network shown to be specific and sufficient for nociceptive processing and pain 

modulation42, 50, 83. One reason for this knowledge gap is that pain is a multidimensional 

experience, comprised of sensory, emotional, cognitive and motivational components. 

Without a better understanding the contribution and interaction of these components, it is 

difficult to identify the mechanisms in an ecologically valid or clinically meaningful way. 

Neuroimaging techniques such as electroencephalography (EEG), magnetoencephalography 

(MEG) and functional magnetic resonance imaging (fMRI) provide a powerful set of tools 

to non-invasively investigate the CNS. Non-invasive brain stimulation paradigms, such as 

transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic 

stimulation (rTMS), offer a unique ability to temporarily and non-invasively enhance or 

inhibit activity within specific brain regions (i.e., create a virtual lesion). Coupling 

neuroimaging with these stimulation paradigms can help identify causal links between brain 

regions and pain perception.

Despite the lack of pain specificity in the CNS, there is a set of brain regions that are 

consistently activated in response to experimental nociceptive stimulation25, 57, including 

brainstem regions, such as the raphe and the periaqueductal gray, the thalamus, the primary 

and secondary somatosensory cortices, the mid-cingulate cortex (MCC), and the insula. 

Some of these regions also exhibit abnormal structure and function in chronic pain disorders, 

suggesting that they may be implicated in nociceptive processing and/or pain 

modulation2, 16, 23. Although the pattern of gray matter abnormalities is not necessarily 

consistent across all chronic pain disorders, there appears to be some level of convergence 

across different chronic pain disorders. For example, patients with chronic back 

pain3, 79, 85, 92, migraine44, 77, 102, trigeminal neuropathic pain22, hypnic headache37, 

chronic post-traumatic headache65, hip osteoarthritis78, 79, complex regional pain 

syndrome26 have reduced dorsolateral prefrontal cortex (DLPFC) gray matter, compared to 

healthy subjects (for a comprehensive review, see 23).

DLPFC FUNCTION

The DLPFC is a large and functionally heterogeneous brain region31 (Figure 1). Compared 

to other primates, the DLPFC is substantially expanded in humans, suggesting a role in 

complex cognitive processes62, 73. The DLPFC spans over several Brodmann areas (BA), 

including BA 9, 8a, 8b and the dorsal part of 46 82. Posteriorly, it is banked by the precentral 

gyrus, and spans the middle frontal gyrus, the superior frontal sulcus, and the lateral aspect 

of the superior frontal gyrus (see Figure 1). The anterior bank is inconsistently defined 

across the literature, with perhaps the best delineation being marked by frontopolar cortex 

(FPC, BA10)45, 68, 69. Neuroimaging studies of two main types have been essential to our 

understanding of DLPFC function: studies of resting state connectivity (i.e., in the absence 
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of an overt task), which reveal the architecture of intrinsic brain networks8, 21, 74, 94; and 

studies involving task performance or perception, where the precise location, intensity, and 

time-course of DLPFC activation depends substantially on the type of task. As shown in 

Figure 1, the

While the DLPFC has been implicated in many important brain functions, and its role 

remains a topic of debate in the literature, it is generally associated with maintenance and 

regulation of top-down modulation, and driving appropriate behavioral responses64, 82. 

However, it has also been shown to be involved in cognitive processes18, 43, 62, 96, such as 

attention6, 104–106, value encoding11, 40, 46, 53, 95, working memory5, creativity52, decision-

making 71, 73, and emotional regulation15, 27, 29, 67, 99.

The DLPFC is also often activated in pain neuroimaging. Notably, it is not the only region 

activated, as described above, but may be a key node of networks implicated in nociceptive 

processing and pain modulation. Specifically, it shows activation in response to nociceptive 

stimuli in healthy subjects, or shows differential activation between chronic pain patients and 

controls. Its role in pain remains ambiguous: it has been shown to be involved not only in 

pain suppression, in line with its role in cognitive and emotional control, but also in pain 

detection. In support of the former hypothesis, a study reported that left DLPFC activity was 

negatively related to pain unpleasantness (the extent to which pain bothers the subject)56. 

Additional support for the role of DLPFC in pain suppression hypothesis comes from studies 

that have found the DLPFC to be involved in placebo modulation of pain70, 107. The role of 

DLPFC in pain detection, on the other hand, is supported by the observation that the DLPFC 

exhibited binary (all-or-none) activity in response to pain in a sample of healthy subjects, 

regardless of the stimulus or reported pain intensities10. In contrast to these pain detection 

and suppression hypotheses, neuroimaging studies of experimental persistent pain, and 

experimental models of hyperalgesia and allodynia have shown a parametric relationship 

between pain sensitization and DLPFC activity41, 55, 87, suggesting a role in pathological 

pain.

Several lines of evidence support a role for the DLPFC in the suppression of pain and 

maintenance of pain inhibition. For example, subjects given instructions to suppress pain 

show increased activation of bilateral – but particularly left – DLPFC during prolonged 

acute pain stimulation30. Bilateral DLPFC activation was associated with reduced 

unpleasantness of thermal pain56. Studies on placebo analgesia have also demonstrated a 

role of DLPFC in pain suppression, and inhibiting DLPFC activity could block the placebo 

response47. In support of these findings, the DLPFC has been implicated in integrating 

incoming nociceptive signals with the expectation of pain4 – a key feature of placebo 

analgesia. Furthermore, perceived control of pain was associated with activation of the right 

DLPFC109. Relatedly, Brascher et al reported that uncontrollable pain resulted in increased 

activation of pain-related areas including the thalamus and insula, but that bilateral DLPFC 

had increased negative connectivity strength during controllable pain to both the thalamus 

and right anterior insula12. In other words, the DLPFC suppressed insula and thalamus 

activity and reduced pain sensitization associated with uncontrollable pain. Finally, the 

connectivity between left and right DLPFC has been linked to individual pain sensitivity, 
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such that stronger interhemispheric connectivity was associated with greater pain 

tolerance93.

There is converging evidence that the DLPFC has a role in cognitive components of the pain 

experience. As mentioned above, studies in which participants are given a sense of 

controllability over nociceptive stimuli have suggested that the DLPFC is involved in 

cognitive control over pain75, 109. Consistent with this finding, pain-related activity within 

the bilateral DLPFC is negatively correlated with pain catastrophizing, a measure of 

maladaptive pain cognitions and a sense of uncontrollability, indicating a role of DLPFC in 

pain coping88. Cognitive control can reduce pain and has in part been attributed to a brain 

network comprising prefrontal regions including DLPFC, ventrolateral prefrontal cortex 

(VLPFC) and orbitofrontal cortex (OFC), the anterior insula, anterior cingulate cortex 

(ACC), and brainstem regions, such as the periaqueductal gray (PAG) and the rostral ventral 

medulla7. Furthermore, activation of part of this circuit, including the DLPFC, ACC, and 

cerebellum, has been implicated in mediating the analgesic effects of spinal cord stimulation 

in chronic back pain patients59, suggesting that peripheral and central mechanisms might 

interact to reduce pain. In sum, these studies suggest that the DLPFC acts as an interface 

between cognitive processing and pain regulation.

It is noteworthy, however, that functions should not be attributed to single brain regions in 

isolation. In this regard, the DLPFC is a key node of at least three brain networks: it sits 

between the interface of the extrinsic mode network (EMN)39 and default mode network 

(DMN)28, 74, and it is a key node in the cognitive control network19. The EMN is thought to 

be a generalized network allocating cognitive resources to any cognitive task or sensory 

processing of the external milieu. The DMN, on the other hand, is active in the absence of 

any overt stimulus or task, and is thought to be related to monitoring of the internal milieu 

and introspection. In fact, it is believed that the DLPFC acts as a switch and interface 

between the EMN and the DMN86. It is important to understand that pain is a 

multidimensional experience and, thus, must be the product of complex network interactions 

between brain regions, and that this activity can interact and modulate other networks. This 

has been shown in a study examining pain-cognition interactions, which reported that acute 

experimental pain increased activity in a network modulated by cognitive load – the EMN89. 

More specifically, the study found that when subjects performed a cognitive task while they 

received a painful stimulus, there was increased activity of in the ventrolateral part of the 

DLPFC, and deactivation of a more dorsomedial part of DLPFC that is associated with the 

DMN. Greater activation of EMN or less deactivation of DMN during task performance 

could be an effect of resource competition, in which cognitive processing is limited by the 

availability of circuits supporting those functions63. These limited cognitive resources could 

then affect top-down modulation requiring active control over pain. These studies suggest 

that targeting the DLPFC activity and connectivity could be used to design interventions for 

reducing pain.

ABNORMAL DLPFC STRUCTURE IN CHRONIC PAIN

Further evidence for a role of the DLPFC in pain processing comes from studies 

investigating the structure and function of the brains of patients with chronic pain23. For 
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example, patients with idiopathic temporomandibular disorders (TMD) had decreased white 

matter connectivity from the MCC to the DLPFC, compared to controls58, and abnormally 

increased left DLPFC activity during an emotional counting Stroop task108. One study that 

contrasted brain resting cerebral blood flow between two chronic orofacial pain disorders, 

temporomandibular disorders and trigeminal neuropathic pain, found that both patient 

groups had increased DLPFC resting cerebral blood flow compared to pain-free controls, 

suggesting that spontaneous pain is related to DLPFC activity111. Other studies have 

reported lower gray matter volume (GMV) or thinner cortices in the DLPFC in patients with 

chronic pain, including irritable bowel syndrome9, 90, chronic low back pain3, 85, 92, 110, 

migraine38, trigeminal neuralgia35, 66, chronic post-traumatic headache65, and complex 

regional pain syndrome26. In some cases, these structural abnormalities were correlated with 

pain catastrophizing or other clinical characteristics38. These findings are corroborated by 

magnetic resonance spectroscopy (MRS) studies that have found decreased levels N-acetyl-

aspartate (NAA) – a putative measure of neuronal viability – in the DLPFC in chronic back 

pain32 and complex regional pain syndrome33. In some cases, these structural abnormalities 

were correlated with pain catastrophizing or other clinical characteristics38. Therefore, it is 

feasible that the gray matter reductions observed are related to neuronal loss in the DLPFC, 

although that does not preclude other potential cellular and molecular mechanisms23, 72.

In terms of functional connectivity studies of chronic pain, only a handful of studies have 

reported abnormal DLPFC connectivity. One study reported that chronic migraine patients 

had reduced connectivity of bilateral DLPFC to nodes of the DMN38. Notably, this 

connectivity was negatively correlated with pain catastrophizing. Two studies reported 

abnormal DLPFC connectivity to various brain regions in chronic back pain17, 36. 

Additionally, aberrant DLPFC activity can predict treatment outcomes in fibromyalgia84, 

and such abnormalities appear to normalize following successful intervention. Chronic low 

back patients showed a lack of deactivation of DLPFC while performing a cognitive task, 

which resolved following effective treatment92. Patients also had abnormal DLPFC 

connectivity to DMN and EMN17. These studies suggest that normalization of the left 

DLPFC function could reflect recovery of cognitive ability, potentially including cognitive 

coping that could help reduce pain. Furthermore, DLPFC connectivity can help direct 

patients into different health care streams and effectively allocate these resources.

While chronic pain is associated with decreased GMV in many cortical and subcortical brain 

regions, there is growing evidence that these structural changes are partially reversed with 

alleviation of the pain through interventions or spontaneous resolution. Several of these 

studies showed partial recovery of the left DLPFC gray matter. For example, one study 

found an increase in left DLPFC brain gray matter in chronic back pain patients six months 

after spinal surgery or facet joint block compared to before treatment92. This normalization 

of DLPFC gray matter correlated with a reduction in clinical pain intensity and reduced 

disability. Other studies reported normalized GMV in right DLPFC following total knee 

replacement78, and normalized left DLPFC GMV one year after onset of post-traumatic 

headache, which corresponded with a resolution of headache pain65. Another study 

investigating the neural underpinnings of effective pain management with cognitive 

behavioral training in a mixed chronic pain population reported increased left DLPFC GMV, 

which correlated with reduction in pain catastrophizing91. Another study found reduced 
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DLPFC GMV in pediatric patients with complex regional pain syndrome, amongst other 

brain regions, that were reversed with treatment26. Notably there was increased functional 

connectivity between the DLPFC and the periaqueductal gray – an opioid rich brainstem 

region involved in descending pain modulation91. These studies suggest that the DLPFC 

structure could be a marker of successful intervention for pain conditions. However, an 

outstanding question in the field is the cellular and molecular basis of structural plasticity in 

pain. Evidence form learning and memory studies in rodents reveal a role for neuroplasticity 

– either related to neurogenesis, or neural reorganization51, 81. In contrast, PET imaging 

studies in humans54, as well as electrophysiological and immunohistochemical studies in 

rodent pain models, suggest a prominent role for glial cells100 or other immune cells80. A 

recent study found that reductions in gray matter volume in fibromyalgia were associated 

with reductions in water content, not neural loss72. However, the same study found that 

increases in gray matter were associated with an increase of a proxy index of neurons, 

suggesting neural growth. These questions must be answered by investigating the 

histological basis of MRI-detectable plasticity to better understand what such structural 

changes in the brain represent, and to develop novel therapeutic targets. Another important 

consideration is that the changes observed in the DLPFC may not be directly related to pain, 

but may be secondary to the resolution of chronic pain. For example, several studies have 

shown the DLPFC to be an excellent therapeutic target for managing and treating major 

depressive disorder24. It is therefore possible that studies that have reported effective chronic 

pain treatment by DLPFC stimulation could be related by treating co-morbidities – i.e., these 

treatments could be treating depression, which then alleviates pain. Alternatively, both 

depression and chronic pain may share some common neural substrates, such as the DLPFC. 

However, given how little is known about these mechanisms, an essential step toward 

developing new chronic pain management tools is to better characterize structural plasticity.

THE DLPFC AS A THERAPEUTIC TARGET

Given the compelling evidence that DLPFC structure and function reflect chronic pain 

states, and that the DLPFC is implicated in pain regulation, it is feasible that this brain 

region could potentially serve as a therapeutic target. Indeed, several studies have now 

shown that non-invasive brain stimulation of this region can effectively manage pain – either 

acute or in chronic pain14, 34, 76.

Specifically, rTMS of the left DLPFC has shown promise as a treatment for various chronic 

pain disorders, including migraine14, 20 and burning mouth syndrome101. rTMS studies for 

other chronic pains have been reviewed elsewhere60, and include other cortical targets, such 

as the primary somatosensory and motor cortices49. In healthy participants, rTMS of the left 

DLPFC reduces spontaneous pain from capsaicin application13, and this effect has been 

shown to occur via an opioid-dependent mechanism (i.e., it is blocked by naloxone)97. 

Another type of non-invasive brain stimulation – tDCS – of the left DLPFC in healthy 

participants has also been shown to increase pain tolerance and improve performance on a 

cognitive task, consistent with the DLPFC’s role in cognitive and pain modulatory 

processes61. Notably this does not suggest that the same region of the DLPFC is responsible 

for both functions, but rather the lack of specificity of tDCS – it stimulates large swathes of 

the cortex. Nonetheless, several studies have reported on the efficacy of left DLPFC rTMS 
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for the treatment of major depression49, which alone might be useful for chronic pain 

patients via improved quality of life and an increase health-promoting behaviors, such as 

increased physical exercise, social interactions, and active engagement in pain-reducing 

strategies. Altogether, there is good evidence supporting the potential for the DLPFC as a 

target for therapeutic intervention in chronic pain conditions. These effects could be 

mediated by descending modulatory (opioidergic) systems, or effects on cognitive or 

affective aspects of the pain experience, or a combination of these mechanisms. Future work 

should investigate the consistency of DLPFC activity in response to experimental pain, and 

the consistency of structural and functional DLPFC abnormalities in chronic pain 

conditions.

There are other interventions that have been shown to regulate DLPFC activity, such as 

mindfulness meditation1. A recent study has shown that mindfulness meditation is effective 

at reducing experimental heat pain112. This study reported a significant deactivation of the 

DLPFC during nociceptive stimulation and an increase in vlPFC and OFC activation, 

compared to sham meditation and placebo pain modulation. Alternative, non-invasive 

treatments that can be used to regulate DLPFC function may be preferred by some patients, 

given that they are associated with few adverse side effects. However, future work is 

required to directly investigate how these techniques regulate pain.

In sum, although the DLPFC has many functions, and is by no means pain-specific, imaging 

and brain stimulation can be used to tap its regulatory effects to modulate and manage 

chronic pain.
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PERSPECTIVE

The structure and function of the dorsolateral prefrontal cortex is abnormal in some 

chronic pain conditions. Upon successful resolution of pain, these abnormalities are 

reversed. Understanding the underlying mechanisms and the role of this region can lead 

to the development of an effective therapeutic target for some chronic pain conditions.
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HIGHLIGHTS

• The role of the dorsolateral prefrontal cortex in pain remains unclear

• The dorsolateral prefrontal cortex is abnormal in some chronic pain disorders

• These abnormalities are partially reversed with pain resolution

• Non-invasive brain stimulation of this region could successfully treat some 

chronic pains
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Figure 1. 
Regions of the brain comprising the dorsolateral prefrontal cortex (DLPFC), including 

Brodmann Area 8, 9 and the dorsal part of 46. The three clusters shown represent subregions 

of the DLPFC based on a parcellation scheme by Sallet and colleagues 82. The DLPFC is a 

large, heterogenous brain region spanning the middle frontal gyrus and the lateral aspects of 

the superior frontal gyrus. It is banked by the inferior frontal sulcus on the lateral side, the 

precentral sulcus on the posterior bank, and the frontal polar cortex on the anterior bank.
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Figure 2. 
The dorsolateral prefrontal cortex is a large, heterogeneous cortical region shown in green on 

a standard brain. The DLPFC is involved in multiple processes, and while it has been 

implicated in pain regulation, the mechanisms are unclear. Here we outline how DLPFC 

could affect pain through several networks, including: controlling the regulation of cognitive 

networks (cognitive control network) through effective switching of default mode network 

and extrinsic mode network; enhancing activity in a network involved in descending 

modulation of pain; reducing emotional reactivity to pain through reward/fear circuitry. 

Some studies have also provided evidence of effectiveness of left DLPFC stimulation to treat 

chronic pain. The right panel provides the labels of the brain regions within each of these 

networks. Abbreviations: Amyg – amygdala; ant – anterior; mPFC – medial prefrontal 

cortex; PAG – periaqueductal gray; PCu/PCC – precuneus/posterior cingulate cortex; pACC 

– pregenual anterior cingulate cortex; PMV – ventral premotor cortex; PPC – posterior 

parietal cortex; Thal – thalamus; vlPFC – ventrolateral prefrontal cortex; vStriatum – ventral 

striatum.
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